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ABSTRACT

This paper is concerned with nonlinear eigenvalue problems of boundary

value problems for ordinary differential equation posed on an infinite

intervdl. It is shown that under certain analyticity assumptions - a domain

in the complex plain can be identified, in which all eigenvalues are

isolated. An intriguing way to solve such problems is to cut the infinite

interval at a finite but large enough point and to impose additional, so

called asymptotic boundary conditions at this far end. The obtained eigenvalue

problem for the two point boundary value problem on this finite but large

interval can be solved by any appropriate code. In this paper suitable

asymptotic boundary conditions are devised and the order of convergence, as

the length of the interval, on which these approximating problems are posed,

converges to infinity, is investigated. Exponential convergence is shown for

well posed approximating problems.-,
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SIGNIFICANCE AND EXPLANATION

This paper deals with the analysis and approximation theory of nonlinear

eigenvalue problems for boundary value problems of ordinary differential

equation posed on an infinite interval. These problems have the following

forms. We have a linear homogeneous system of ordinary differential equation

depending nonlinearly on a complex parameter X. This system is defined on

the interval (t 0, ] where t0 is some finite point. Moreover we have

linear homogenous boundary conditions at t0  and a continuity requirement at

infinity. We look for values of the parameter X so that a function y t 0

exists which fulfills the system of differential equation over the whole

interval [t 0-), the boundary conditions at t0  and the continuity

requirement at infinity.

Problems of this kind frequently occur in fluid mechanics when the

stability of a laminar boundary layer is investigated (Orr-Sommerfeld problem)

and in quantum physics.

In this paper properties of the eigenvalues X and the eigenfunctions

y are investigated.

An intriguing way to solve such problems is to cut the infinite interval

at a finite but large enough point T and to impose additional - so called

asymptotic - boundary conditions at T, which substitute the continuity

requirement at infinity. The resulting finite eigenvalue problem can be

solved by any appropriate code, for example by collocation methods.

Suitable asymptotic boundary conditions are derived and the convergence

of eigenvalues and eigenfunctions as the length of the interval, on which the

finite approximating problems are posed, converges to infinity, is

investigated. Exponential convergence is shown for the most important cases.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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NONLINEAR EIGENVALUE PROBLEMS ON INFINITE INTERVALS

Peter A. Markowich and Richard Weiss*

1. INTRODUCTION.

This paper is concerned with nonlinear eiqenvalue problems of the following form

y, = taA(t,X)y, 1 C t < -, a >

B(X)y(1) = 0 (1.2)

y e c([l,-]) : y e c((I,-)) and lim y(t) exists (1.3)
t

where y is an n-vector and A(t,X) is an n x n matrix. Equation (1.1) has a

singularity of the second kind of rank a + 1 in t = -.

A solution of (1.1), (1.2), (1.3) is given by a pair (V,y), V e C such that y t 0

fulfills (1.1), (1.2) with X = U and (1.3). Eigenvalue problems on infinite intervals

occur frequently in quantum mechanics and in fluid mechanics, when the stability of laminar

flows over infinite media is investigated (see Ng and Reid (1980)).

de Hoog and Weiss (1980a) and Markowich (1q80a) treated linear eigenvalue problems on

infinite intervals, i.e. A(t,X) = A 0(t) + A 1(t) and A 0,A e C([1,=]) and B(X) R B.

It was shown that all eigenvalues X of this linear eigenvalue problem, for which the

matrix A(-,X) = A0 () + XA1 (-) has no eiqenvalue on the imaginary axis, are isolated, if

not all X e C are eigenvalues. Moreover if A1 () = 0 there is an infinite sequence of

eigenvalues X, which fulfill IXI + -. de Hoog and Weiss (1980a) also proved that the

spectral subspces are finite dimensional.

The first goal of this paper is to show the generalization of the isolatedness-

statement to nonlinear eigenvalue problems assuming that B(X), A(t,X) are analytic in

e D Q, where Q is the domain in which A( -,X) has no eigenvalue on the imaginary /' ; O

*Institut fur Angewandte Mathematik, The Technical University of Vienna, Austria, / ' "
Gusshausstrasse 25, A-1040 Wien, Austria.
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axis. The analyticity is supposed to hold for all t e [1,-] and A(t,X) is jointly

continuous in [I,-] x fl. The number of rows of the matrix B(W) is assumed to equal

r_, which is the sum of algebraic multiplicities of eigenvalues of A(-,X) with negative

real part for X c 9.

The second goal of this paper is to investigate the approximating eigenvalue problems

X= t0 A(t,) xT , 1 1 t 4 T, T >> 1 (1.3)xTT

B()x T(1) = 0 (1.4)

SW)XT (T) = 0 (1.5)

where S(X) is a suitably chosen matrix with r+ n - r rows.

The main question arising here is to find out which matrices S(M) lead to

convergence of the eigenvalues and eigenfunctions of these approximating problems to the

eigenvalues and eigenfunctions of (1.1), (1.2), (1.3) as T + -. A class of matrices

S(A) which implies exponential convergence will be identified. The convergence results

are the generalization of the results obtained by Markowich (1980a) for linear eigenvalue

problems. As Markowich (1980a) pointed out there is not always (even in the case of a

linear eigenvalue problem) an obvious way to choose the suitable S which is independent

of X. However there is an intrinsic way (see Keller (1976)) to set up an 'asymptotic'

boundary condition S depending on X. Therefore these 'finite' eigenvalue problems are,

even in the case of a linear 'infinite' problem, nonlinear.

This paper is organized as follows, in Chapter 2 nonlinear finite dimensional

eigenvalue problems are discussed, Chapter 3 is concerned with the case when A is

independent of t, in Chapter 4 this restriction is dropped and Chapter 5 is concerned

with examples illustrating the theory.
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2. FINITE DIMENSIONAL NONLINEAR EIGENVALUE PROBLEMS.

Let AC) be a k x k matrix, holcmcrphic in some domain S1 C C. A value W Q C

for which the linear equation

A( 0, - 0 (2.1)

possesses a solutin, is called an eigenvalue and is a corresponding eigenvector. Let

detAMi denote the determinant of A(A). Since (2.1) holds iff detA(U) - 0 it follows

from the identity theorem of holomorphic functions that either all X e S are eigenvalues

or every compact subset of 2 contains at most finitely many eigenvalues.

Let c e (0,e0] be a real parameter and B(X,c) be a k x k matrix, holomorphic in

n for all c e (0,c0] and fulfilling

lim sup B(X,c)% - 0 for all A compact, A C S1 (2.2)
c+0 AeA

where I.I denotes some matrix norm. Now consider the perturbed nonlinear eigenvalue

problem

C(X,0) z (AA + B(Mc)l = 0, * 0 (2.3)

Since

lim detC(X,c) - detA (A) (2.4)
£+0

,#e may employ standard perturbation results for zeros of holomorphic functions. Therefore,

let U be a root of order s of detA(X) = 0, 8 be a neighbourhood of 11 and

b(C) - sup IdetAUL) - detC(M,0)1 (2.5)

Then we get

Theorem 2.1.
1 s

(i) When c is sufficiently small there are precisely s eiqenvalues ,.. .of

(2.3) near w (counting multiplicitie) and they satisfy

I

- uC 4 const.b(c)
s
, j = 1. s (2.6)
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(ii) The mean

SU(2.7 )
iti1

fulfills

1u < i const.b(e) (2.8)

The perturbation statement for the eigenvectors is weaker.

Theorem 2.2. Let c + 0 as n + - and let be a sequence of eigenvectors of (2.3)
n n

(with norm one) each of them belonging to a V1 for i = 1,..., then there is a
n

subsequence tC which converges to an eigenvector with norm one of (2.1) and
nk 1

inf , - 4 I const.b(C 
)s  

(2.9)EeN ( A( 1) En .n

N(A(j)) denotes the nullspace. A proof can be found in G. Vainniko (1976), par. 4.

In the case of a linear eiqenvalue problem A(A) = A - XI we get a stronger

perturbation result for eigenvectors if the algebraic and geometric multiplicity of the

eigenvalue U is equal to one. Therefore we define:

Definition 2.1. The eigenvalue U of (2.1) is called simple if U is a zero of order

one of detA(M) = 0.

It is easily seen that V is a simple eigenvalue of (2.1) iff det(A(p) + TA'(')) = 0 has

a zero of order one at T = 0 which holds iff T = 0 is an eigenvalue of geometric and

algebraic multiplicity 1 of the generalized linear eigenvalue problems

(A(p) + TA'(p)) = 0 . (2.10)

We get

Theorem 2.3. Let V be a simple eigenvalue of (2.1). Then:

(i) for C sufficiently small there is a unique eigenvalue p of (2.3) and it

satisfies

Iu - jil 4 const IdetA(w) - detC(u,e)l (2.11)

(ii) for every U there is exactly one eiqenvector F (with norm one) of (2.3)

which satisfies

1 - F ( const IdetA(U) - detC(W,c)j . (2.12)
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Proof. The equations

C(X, ) = 0, C CI = 1 (2.13)

where 101 indicates the euclidean norm in C
k 

are a nonlinear system of equations for

(I , ). The Frechet derivative of the unperturbed problem (c= 0) at (uE) is given

by the matrix

T (2.14)

which is nonsingular oecause U is simple. i) and (ii) follow in a straight forward way

by applying the techniques of Keller (1975) and Vainniko (1976) par. 4. Here 6 shrinks

to the point V.

We conclude this section with a result on holomorphic families of projections.

Thorm .4 etP() k Ck
Theorem 2.4. Let PM : C + C be a family of projections holomorphic for X e Q. Then

( for any pair (A ,A 2) e I x Q there is a nonsingular n x n matrix Q(XA 2 2

such that

P(X) = Q(I' 2 P2)Q(XAI') (2.15)

kk
(ii) P( )C is isomorphic to P(2 )C

k  
for all 1,A 2  9.

(iii) Let r = rank P(M). Then there is a k x k matrix of rank r, holomorphic in

0, whose columns span P(I)C
k

Proof. (i) follows from Kato (1966) and (ii), (iii) follow easily from (i).



3. NONLINEAR CONSTANT - COEFFICIENT EIGENVALUE PROBLEMS.

We consider

y' = tcA(X)y, 1 f t < -, a > -1 (3.1)

B(X)y(1) - 0 (3.2)

y e C([1,-]) (3.3)

where A(A) * 0 is an n x n matrix.

The analysis for these problems will outline the approach for the more complicated

case, when A is also a function of the independent variable t. We assume that

A(.), B(-) are holomorphic in some domain 0 in the complex plain and that there is a

domain 9 C 0, so that AMA) has no eigenvalue v(X) with vanishing real part.

Therefore A(X) for all X e S1 has ajfixed number of eigenvalues with a negative real

part, which we call r and a fixed number of eigenvalues with a positive real part, which

we call r+ (r+ + r- - n). Now we take a compact subset A C Q. Then there are two

closed rectifiable curves r+, r_, completely in the right resp. left half plain, so that

for all X 8 A all eigenvalues of A(A) are enclosed by either C or r_.+

Now let

P+(X) = 2 [ (z - A(X))-Idz, rankP+(X) = r (3.4)
2 2wi r +C

+

p() = . f (z - A(X))-dz, rankP (M) = r (3.5)

be the total projections onto the direct sum of invariant subspaces associated with

eigenvalues of AMA) with positive resp. negative real part.

Prom Kato (1966), Chapter 2 we conclude that P+, P_ are holomorphic in A*, the

interior of A.

The general solution of the problem (3.1), (3.3) is

y(t,A) = exp (---- A(A))P_(X) , C e Cn (3.6)
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Theorem 2.4. (iii), implies that there is a n x r matrix V(M) of full rank and

holomorphic in A* which spans p (X)C
n
. Therefore we can rewrite (3.6) and get,

inserting into the boundary condition (3.2)

MX' r

F(A)n - B(A)exp (A---) V(A)n = 0, 7) e C (3.7)

assuming that B(X) is a r x n matrix. Every pair ((j,n), n * 0 which solves (3.7)

determines a solution of the eigenvalue problem (3.1), (3.2), (3.3) by

ta+1 J

y(t,p) = exp (- A(p))V(P) • (3.8) ]
Our assumptions guarantee that F(X) - B(X)exp (A") V(X) is holomorphic in A-, so we

get from Chapter 2

Theorem 3.1. Let B(M) be a r x n matrix. Then either all x e Q are eigenvalues of

(3.1), (3.2), (3.3) or every compact subset of S contains at most a finite number of

eigenvalues. If U is an eigenvalue of (3.1), (3.2), (3.3), the dimension of the

nullspace is between 1 and r-.

Now we want to approximate the eigenvalue problem (3.1), (3.2), (3.3) by finite

interval problems:

x; = tA(X)xT, 1 4 t ( T, T >> 1 (3.9)

B(X)xT (1) - 0 (3.10)

S(X)x T(T) - 0 (3.11)

where St ) is a r x n matrix whose choice will be discussed later.+

We write the general solution of (3.9) as

to~l [;o+1 _ T+1

xT(t) = exp (L A(X))V(X) r_ + exp ' + 1 A( X) )W( X) r+ (3.12)

where the columns of the n x r+ matrix W(M), which is holomophic in A*, span P+(,)C
n .

Evaluation at the boundaries and usinq (3.10), (3.11) qives the n x n block system

-7-



S ( X )e xp M X) )V ( X ) B ( X )e p (I - --- - A (X ) W ( X )
n- Ct cxp

F(XT) - = + -" = 0 (3.13)

S( )exp +- A( 1) )V( X) S( X)W( X)

We conclude that

detF(k,T) = detF)X) - detS(A)W(A) + c(),T) (3.14)

holds, where

-c(XT)l c const.Rexp T A(X)'W(X)I-IS(X)exp A( )V( (3.15)+ 1 cs+ I

Let v_(X) be the largest negative real part of the eiqenvalaes of A(I) and let 'XC

be the smallest positive real part of the eiqenvalues. Then (3.15) reduces to

Ic(X,T)H r const(X)exp i(v (X) - v (X)) T0+ (3.16)

where const(X) is bounded when I varies in a compact set. Now we prove the convergence

theorem.

Theorem 3.2: Let the r+ x n matrix S() be holomorphic for X e Q and assume that

detS(X)W(X) * 0 for X e Q. Let u e Q be an eigenvalue of (3.1), (3.2), (3.3) of

order s, i.e. detF(X) has a zero at A = U of order s. Then there are exactly s

1 s
eiqenvalues ........ (counting multiplicities of the zeros of detF(X,T)) for T

sufficiently large in a sufficiently small neighbourhood of 0 and

T C
max -ul const. exp ((v( 1j) - v+(u) + E) (3.17)

i=1 1)s + s(0 + 1

T 0+1

-T 4 const. exp v(x (k) - v (p) + ., or (3.1IS)

where and E > 0 is sufficiently small. Let xT be an eioenfunction
i=1

belonging to one of the WT s. ThenT s

P I
inf N de ye const, exp (( 1() -(3.(1) + () T3.3) 3. )
yeN

where N denotes the nullspace of (3.1), (3.2), (3.3) for A p.

-9-



rI

Proof. All statements follow immediately by regarding (3.13) as perturbed eigenvalue

problem of

( ~ A( \)
B( )exp )v( A) 0

0 +(I) 
Y)) = 0 (3.20)S0 SOMl )

(which is equivalent to (3.7)) and by applying the Theorems 2.1 and 2.2.

Now we discuss a possible choice of S(X). Let the rows of the r+ x n-matrix S (X)
p

span the range of (P (X)) (the superscript denotes transposition). Then the asymptotic

boundary condition

S ()x T(T) = 0 (3.21)

fulfills the assumptions of Theorem 3.2. Moreover

P+(X)exp ( ---a- A( X) )V(X) = 0, X e n (3.22)
a +1I

holds. Therefore, using the boundary condition (3.21), the matrix in the (2.1) position in

(3.13) vanishes for all T > 1 and the approximate problems (3.9), (3.10), (3.11)

reproduce the eigenvalues and eigenfunctions of the problem (3.1), (3.2), (3.3) exactly.

4. GENERAL NONLINEAR EIGENVALUE PROBLEMS ON INFINITE INTERVALS.

We consider the following problem

y' = t
m
A(t,X)y, 1 4 t < , s > -1 (4.1)

B(X)y(1) = 0 (4.2)

y e C((I,=]) (4.3)

where A(t,X) is an n x n matrix holomorphic for A in some domain and every fixed

t e (I,-] and continuous in [1,-I x 9. Also B is holomorphic in €. We assume that

there is a domain C C , so that the matrix A(w,X) has no eiqenvalue v(X) on the

imaginary axis for I e Q. As in Chapter 3 we take any compact subset A -- 2 and

construct the projections P (), P_(1)

-0-



P X) = _ r (z - A(- X))- dz, rankP (X) E r+ (4.4)
2,ri • +r +

1-
P(X) =-- f (z - A(-,X))- dz, rankP M) - r (4.5)

The contours r+, r are chosen as in Chapter 3. We set

+A-X -r

€(tX) = exp (A+, t (4.6)CK + 1 4 6

and define the operator HA : C([6, 1) C([6,=]) for 6 > 1

t

(HX)(t) = O(tX) f P+X) (-s,A)s Cg(s)ds +

t C4.7)

+ $(t,x) f P (X) (sXs Cg
(
s)ds

6

so that HXq 0 C(6,- ) is a particular solution of the problem

y' = tUA(-,X)y + t(q(t), t > 6, q e C([6,-]) . (4.P)

An analysis of H can be found in de Hoog and Weiss (1980a,b). P+, P_ are holomorphic

in A* for every (fixed) t e [6,-j and continuous for t e 1,-J. Then it is an easy

exercise to show that (HA q(.,X))(t) is holomorphic in A* for every fixed t e [6,=].

From de Hoog and Weiss (1980a,b) we conclude that

OH X I C(X) (4.9)

where CA) is independent of 6.

Now we show that CCM) remains bounded when A varies in compact subsets K C A*.

From (4.7) we derive

t
IH , 0 max (f IF+(t,s,X)Nds + f FC_(t,S,X),ds) (4.10)

X (6,") te[6," t 6

where

-10-



(a) F+(t,s,) s(t, A)P+() I() X C A

(4.11)

(b) F_(t,s,%) a a *(t)P_(X) I (-, X), X C A

holds. We transform A(-,X) to its Jordan canonical form J(-,A):

A(-,X) - E(X)J(-,A)E 1 (A), 6 ( (4.12)

and assume that J(-,A) has the block structure

J(-,X) - diag(J +(A),J X)) (4.13)

where the r+ x r matrix J +() contains only eigenvalues with positive real part and the

r x r- matrix J (A) contains only eigenvalues with negative real part for all X S

Defining the diagonal projection

D+ - diag(I r  0), D_ diag(0,I r _ (4.14)

we get

P+) - E(M)D + E-1), P (A) - E(A)D E- (A), A @ 0 (4.15)

and obtain

i +(

(a) F+(t,s,X) sO)' E X)1)E1 (A)

0 0

(4.16)

0 0

(b) F_(t,s,X) - sE(I) E-I X)

0 exp( - )- (ta
+ 1  

- sa+1))

Obviously, F+(t,s,.), F (t,s,.) are holomorphic in A* for fixed st.

Each entry of P +, F is a sum of the form

f (t,s,A) f so a (X)ex p (A ItM - s+1 l) (ter - a+1 ) (4.17)ia=+

where v+(A) are the eiqenvalues of J (A) and v (X) are the eiqenvalues of 3(M).

-11-



The integers ji fulfills 0 4 j ( (r+ - 1) resp. 0 4 ji j (r- - 1). a (XC is a sum

of products of elements of E(X) and E- IX).

Now we take a compact subset K C A*. It follows from Kato (1966) that E0.1, E- (M

can be chosen holomorphically in K - (z, ... z } where the zi are points at whici

eigenvalues V () change algebraic or geometric multiplicities. Also J(X) is
i

holomorphic in K - {z, 1 .  zn.
"  

Without loss of generality we assume that none of the

zi's lies on the boundary 3K. If that happens we can choose a larger compact set K D K,

so that (zl,....z n} () 3K = . Since the entries f ±(t,s,X) are holomorphic in K, they

take their maximum at the boundary aK. The coefficients a (A) and the v.(A) arei 1

continuous on 3K and therefore

max If (t,s,Xfl (4.18)

±c
r * sa max la.(M)I max (exp(- ~ (t 1 - s a+1 Ita+1 - sc I i

XeaK o0ixr C1+1

j=1(1)r

1- +
where c. = min Re v.(X), c = max Re v (A) hold. Therefore we get

Xe;K XeaK

(a) max fF+(tSX)I 4 c1 (K)s
0 

max (exp(---- (t - s ))( s
o
,+ - t a+)

i  
(4.19)

XeK 0 (i (r +

and
c

(b) max IF (t,s,X)II 4 const. s
° 
max (exp(- -- (t

a -1 - s s1  (4.1)

Aex 0ai 0t

will 0 < c = min c 1  0 > c. max c. and 0 < i < n hold.
i=1(1)r i=l(1)r

+

Using (4.10) and the estimates derived in Markowich (1980b) we get

max IH I C(K) (4.20)
XeK

where C(K) is independent of 6.

-12-



We rewrite (4.1) as

y' tA(o,A)y + t'(A(t,A) - A(-,X))y (4.21)

setting

G(tX) = A(t, X) - A(-,A) (4.22)

We get from (4.21)

r

y(t) - *(t,X)V(X)n + (H G(.,X)y)(t), TI e C (4.23)

where the columns of the (n x r )-matrix V(X), which are holomorphic in A-, span the

range of P (s). The assumptions on A(t,X) guarantee that there is a 6 > 1, 6 - 6(K),

such that

-G(.,X) , 1 for all A e K (4.24)
161- 2C(K)

where K is any compact subset of A* and C(K) is as of (4.20). Therefore

max OH G(.,X) ,

XeK X M-1 2 (4.25)

This implies that I - H G(.,A) C(tS,-]) + C([6,-J) is nonsingular for all x 6 K and
xr

y = (I - , (.,))V() , n e C (4.26)

holds. y is defined for t e [6,=] and all X e K. The series expansion for the

n x r matrix

= ((I - H G(.,X))- (.,)V())(t) (4.27)

is given by

= (H XG(.,X)) 0(-,x)V((X) e C([6,-), Xe K (4.28)
i=O

0(k)°
The partial sums p (t,A) of this series are holomorphic in A e K for all fixed

t e 16,-1 and because of (4.25) we get

-13-



k( - max ,m (.,a)V ) , (4.29)
i=0 K GK

0(t,X)V(X) is holomorphic in A- D K and therefore the partial sums are uniformly

bounded on K and so *_(t,A) is holomorphic in A e R for all fixed t e [6,0]. By

continuation *_(tA) is holomorphic in A e R for all fixed t e (1,0].

Inserting into the boundary condition (4.2) gives the finite dimensional eigenvalue

problem
r

F(A)n= B(A)_(,A)n = 0, n e C (4.30)

where 8() is assumed to a r- x n matrix. Given now any compact subset e C Q we

choose A, K such that AO D K, K D 8. So F(A) is holomorphic in 8 and Theorem 3.1

holds for the problem (4.1), (4.2), (4.3). Therefore, excluding the trivial case, all

eigenvalues in S are isolated and the dimension of the nullspace is between 1 and r_.

Now we prove the asymptotic estimate for pt,A):

max 1,(t,x)I C const. exp(( max Re + +( a + 1(4.31)Aee eae
i001(1) r

where v (A) are the eigenvalues of A(-,X) with real part less than zero and e > 0 is

sufficiently small so that the exponent has negative sign.

If there is one (or more) of the singularities {z1,...ZN ) of E(A) on the boundary

D8, we take a larger set 6, such that 6 C 0 1 , 81 C K and {z1 ... ZN n 361

Then we derive as in (4.1P)

max fl(t,X) ( ~const. exp(( max Re v(X) + ) - t

max rcon + 1 (4.32)

i=1 (1 )r

The necessity to add C > 0 in the exponent comes from the possibility that 0 might have

to be changed to 91 described above and from the possible occurence of powers of

It - s I. A sufficiently small change and the continuity of the eigenvalues assure

that c is sufficiently small.
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max ICHG(.,A)¢(.,))(t)I 

<max IG(,,)Ik , (f maxIF '(ts,)I max ,,(sA),ds (4.33)
We '' t Wee We

t
+ f max IP (t,s,X)i max I (s,Mds)

6 Xee AeG

Now (4.19), (4.32) can be used for the estimation of the righthand side of (4.39). 6 has

to be substituted for K in the definition of c+, ci . Since E > 0 the estimate given

in Markowich (1980b), Chapter 1, Theorem 2.3, can be used and

max I(G(.,H ).,A)(t)I (434)

,Xee A
4 const. max IG(.,X)i exp(( max Re v(A) + )

ee M1 e aea+

i-1(1)r

follows. Repeated use of (4.34) and (4.28) gives (4.31)

As in Chapter 3 we investigate the approximating 'finite' eigenvalue problems:

X= - t A(t,X)xT , 1 4 t < T, T >> 1 (4.35)

B(X)XT(1) = 0 (4.36)

S()xT (T) = 0 (4.37)

where S(A) is a suitably chosen r+ x n matrix whose entries are holomorphic in a.

Rewriting (4.35) as

x; = tA(C,AXT + taG(t,A)xT, 1 4 t 4 T (4.38)

where G(t,X) is defined as ,)f (4.22), we set

xT = 0(t,A)V(C)n + *Ct,A) (T,A)W()n + (H G(.,A)X )(t) (4.39)
T+ A:T T

where the columns of the n x r matrix WA), which can be chosen holomorphic in A*,

span the range of P +(A) and H, T : C([6,T]) + C([6,T]) is defined as

H X,T9  H AgT (4.40)

for g e C({6,T), 1 ( 6 < T and
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gTt - (4.41)

g(T), t > T

has been set.

Given a fixed eigenvalue , = j 8 ) of (4.1), (4.2), (4.3), we take a compact subset

X C A* with u e K and conclude from (4.20),

max 4,T 16,Tj - max 11 , U C(K) (4.42)
keK XeK

and therefore there is a fixed 6 = 6(K) > I such that

max 114 G(*,)A

x I A,T . [ ,T ] 2 
(4 .4 3 )

holds so that (I - HXTG(.),))- exists for all X e K as an operator on CU(d,T]). We

get from (4.39)i

xT = (I-HTG(.,T )) .,X)V( )_ + (1-,T G(+,))-(,)-T,X)W( ) +  (4.44)

on (6,-]. The analyticity of

(a) T _(t,)5 = ((I - 14,G(.,A) -(.,A)V(A))(t) (4.45)

(b) T C+(t,)) = ((I - H ,TG(*,))-I(.,)I(T,))W(X))(t) (4.45)

in X for t e (6,T] follows as the analyticity of *_(t,X).

The n x r matrix T resp. the n x r+ matrix Ti +  fulfill the equations

00) T _*X (H X,T G(O,X) ( ,) ( l ,)) (4.46)

(b) T( -,A) (H ,TG(,A)T +(°, ))(*) 4'( "(X, ) (TX)W(X) (4.46)

Similar to de Hooq and Weiss (1980a) we derive some properties of T, T. From (4.27)

and (4.46)(a) we get for T z  = T"-

TZ
_ = H G.,) T Z + (HG(.,X5 - H XG(., (4.47)
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and therefore we get by regarding G(.,))_(.,X) e C(6,Tl)

) - _ (I - HX, TG(., ))-1(H , T  - H )G( ,))' (.,)) 6 C([6,T]) (4.48)

Obviously for g e C([.T]) and t e (6,T]

T -

((H - Hx)g)(t) 4(t,x) f P+(X) (sX)sa(g(T) - g(s))ds = (4.49)
-1 T

- *(t,A)O- (T,X)P +(A)O(T,A) f(s,A)s(g(T) - g(s))ds -

. 0(t,X)s- (TX)W(X)y(g,T)

rr+

where y(g,T) e C holds and therefore

((H X,T - HA( (T,)W()r T

is fulfilled. rT is a r+ x r matrix. From (4.47) and (4.48) we derive

T*(' - + To+ T '+ A)F rT (4.50)

Therefore the matrix [@_(tX), T*+(t,')] has rank n for all t 6 [6,T] and is a

fundamental matrix of (4.35).

Instead of (4.44) we can write the general solution of (4.35) as

x T - *_(tX), + T*+(t'X)n+ (4.51)

For the foilowing we need an estimate for T,(,X). From (4.45)(b) we derive

max BI$(.,) - *(.,X) -(TX)W(.) ,
eT P+ X)[6,T] 'Nee

(4.52)
r const. max UG(.,) (°,X) -1(TX)W(A)I16 T(

Ne 8

Using similar analyticity arguments as above it is easy to check that the right hand side

of (4.52) can he estimated by

w(T,<) = max (max IG(t,X)exp( --- (t" - T 
1

) (4.53)

te(6,T] Xea + 1
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where K - () - min Re v +() and E > 0 sufficiently small.

i-1(llr+

Obviously lim w(T,K) - 0 and we get after continuation to [1,T]
T +

lim I - (.,)4- (T, ()WI ,T] = 0 (4.54)

uniformly for X e 0.

Now we evaluate (4.51) at the boundaries t - 1,T and use the boundary conditions

(4.36), (4.37) getting the n-dimensional nonlinear eigenvalue problem

- B().h %) . - B: ')T,)"' ') _ 0 (4.55)
S( SM*_(T, X) S( X )T *+IT, X) 11

Interpreting (4.55) as perturbed eigenvalue problem of

0 S(A)W(A) + o(T,A)

we get with F(X) = 8(t),_(1,A):

detF(X,T) = detF(%)(detS(X)W(X) + o(T,X)) +
(4.57)

+ 0(1 T*+(1,X) I IS(X)U_(T,)I)

where

Io(TA)l 0 as T + - (4.58)

uniformly for x e e.

Assuming that S(X)W(X) is nonsinqular we get by cancelling detS()w(M) + o(TN)

and by applying the perturbation arguments of Chapter 2:

Theorem 4.1. Let the r+ x n matrix S()) be holomorphic for A e 9 and assume that

detS())W(N) * 0 in S1. Let U e S1 be an eigenvalue of (4.1), (4.2), (4.3) of order

s, i.e. detF(l) - detB()*_(1,) has a zero of order s at X = ,. Then there are

1 5
exactly s eigenvalues VT'**''1 T (counting multiplicities of the zeros of detF(XT))

for T sufficiently large in a sufficiently small neighbourhood S of p and

-18-



max U1~ . 4 const.(w(T,K(S )))sexp((v (p)+€)U ) (4.59)

i1(Is lT " + 1)

where v_(u) - max Re v1 (y) and w(T,ac) is defined in (4.53) and E > 0 is
i-I ( r-

sufficiently small.

ul - I < const. w(T, c(S ))erp((V () + C) T- (4.60)

has been set. Let xT be an elgenfunction belonging to one of the 14's.
i 1-i

Then

inf EXT - V1 IT1 4 conet. (w(T,K( P)))aexp(C(V_() + ) s( + 1) (4.61)

U

holds where N denotes the nullspace of (4.1), (4.2), (4.3) for X = u.

These convergence results are the extension of the convergence results for linear

elgenvalue problems given in Markowich (1980). The orders of convergence obtained there

hold without any change for nonlinear problems.

A possible choice for S() is given by (3.21), i.e. the rows of the holomorphic

r+ x n matrix S(M) - S (A) span the range of (P ()) T  (the superscript T denotes

transposition). This choice reproduces eigenvalues and eigenvectors exactly in the case

that A does not depend on t. However, in the general case this does not hold anymore

but in some important cases the asymptotic boundary condition SC)p)xT(M = 0 implies a

faster order of convergence than given in Theorem 4.1. Assume that A(t,X) decays

algebraically or exponentially:

A(t,A) + 0(tye- a (t ) for t + (4.62)

uniformly in compact subset K C 9 where y 8 R and a(t) ) 0 is a real function such

that ty * 0 as t + -. Then since S (X))(T,X)V(%) E 0 we get from (4.46a)

p

IS (X)* (T ,X)i = IS (X)(H G X

4 const. TeT)exp(( max Re v.(X) + £)

i'1(1)r L a + I
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This follows from the estimates given in Markowich (1980b) applied to (4.27). In this case

the right hand side of the estimate (4.58), (4.61) given in Theorem 4.1 can be multiplied

by (T'e'a(T))s and the right hand side of (4.60) can be multiplied by Tye-aT).

Now we consider the case of simple eigenvalues of (4.1), (4.2), (4.3). Since we only

have defined simple eigenvalues for nonlinear finite-dimensional eigenvalue problems we

give

Definition 4.1: An eigenvalue p e S1 of (4.1), (4.2), (4.3) is called simple if the

corresponding nullspace is one dimensional, say it is spanned by the normed vector y, and

if the problem

v' - tA(t,)V = tAA (t, u)y(t) 
(4.63)

B(V)v(1) + Bx(U)y(1) = 0 (4.64)

v e C([1,-]) (4.65)

has no solution. Now we show

Theorem 4.2. The eigenvalue U of (4.1), (4.2), (4.3) is simple iff V is a first order

zero of detF(X) - 0.

Proof: Since y is an eigenvector corresponding to the eigenvalue U e

Y(t'j)
r

for some E e C holds. Obviously

Y (t IV) dj j t'1)F

is a particular solution of (4.63), (4.65) therefore the general solution of (4.63) is
r

v(t) + Y(t,uB + y(t,u), 6 e C

Inserting into (4.64) gives

= -(B(V) d J_(1,j) + B ( ,1))

or

F(u) = -Fx (U)

This equation is unsolvable (for 8) iff the generalized linear eigenvalue problem

(FUI) + F x (u)) = 0 has K = 0 is an eigenvalue with geometric and algebraic

multiplicity 1. This holds iff det F(M) = 0 has a first order zero at X =
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Now we show that approximations for an eigenvalue-eigenvector pair (X,Y) can be

computed - in the case that A. is simple - as solutions to nonlinear 'finite' two point

boundary value problems. Lentini and Keller (1980) did computation pursuing this way.

We set, assuming that v e P is simple

T
=n+ .U z - (y1 ,... .,ynyn 1 ) I i y (1) =1(4.66)

and get from (4.1), (4.2), (4.3)

Z. ta n~.i( = ocf(), 1 t < (4.67)
0

Bn+i(1)(~
zn;) b(z(1) = 0 (4.68)

n 2 1

zi cri-i (4.69)

The ondtio y (1 1 shall sort one eigenfunction y 0 out of the one

dimensional eigenspace.

(4.67), (4.68), (4.693) is a singular two point boundary value problem as described by

de Hoog and Weiss (1980a,b), Markowich (1980a,b,c) and Lentini and Keller (1980). Since

all eigenvalues in Q are isolated and since V is simple the solution

Tz = (y.."y ,p) of (4.67), (4.68), (4.69) is locally unique. Now we will show that z

is isolated, i.e. the linearized problem, has only the zero-solution. We get for the

linearized problem with u = (u 1,.* un'n Tu

0-21- 0



L (u() 1 U(1) = 0 (4.71)

2y(l) 0

u e c((1.,.)) (4.72)

Setting v = (u1,...un)T we derive

(a) v, - t A(t., )v un+1 tAX (t,U)v (4.73)

(b) Un+ = const. (4.73)

(a) B(U)v(1) + un+1 (1)B ()y(1) = 0 (4.74)

T(b) y(1 v(1) = 0 (4.74)

v e C([ ,-]) . (4.75)

Because of Definition 4.1 the problem (4.73), (4.74), (4.75) has no solution unless

Un+1 * 0. If Un+1 * 0 then v has to be an eigenfunction of (4.1), (4.2), (4.3),

therefore v = cy for some constant c. (4.74)(b) gives c = 0, such that u = 0

follows as the unique solution of (4.70), (4.71), (4.72). Therefore, we conclude from

Markowich (1980b) that the infinite problem (4.67), (4.68), (4.69) can be approximated by

finite interval problems of the form

w c = t f(t,w T ), 1 e t - T (4.76)
TT

b(w T(1)) = 0 (4.77)

S(w T(T)) = 0 (4.78)

1 n n 1)Tn

where wT = (WT...WTWT and (wT...,w ) is the approximation to the eigenvector

y and wn
+
1 is th- approximation to X. The choice of S R R is explained in

Markowi-h (1980b). The analysis given here shows that we can take

S(wT(T)) = S (w
n + 1 

(T)) ((479)
T p T ( w) nw;T)) 

4.g

The superscript T denotes transposition. Markowich (1980b) showed that the solution

wT is locally (around z) unique for T sufficiently large and that

1z - w TI ,T1 4 const. IS(z(T))l = const. PS (p)y(T)l (4.90)
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holds and therefore we get the order of convergence given in Theorem (4.1) with s - 1,

because the boundary condition (4.78) is equivalent to (3.21).

If (4.63) holds the order of convergence is

IuT - P1 4 const. Tlexp(( max Re vi(X) + E) - a(T))
i-1(1)r-

and the same holds for the normed eigenvectors.

5. CASE STUDIES.

The first problem we treat is the so called radial Schr~dinger equation of the Kepler-

problem (see Jirgens-Rellich (1976), Chapter 3, par. 9) which is given by

-u" + {( + L)tr
-

2 - 2cr- )u = -Xu, 1 C r < (5.1)

where i e N0, c e R holds.

The transformation

y (yY2T (UU')T (5.2)

takes (5.1) into the system

F 1
(I +i1r -2 -2cr - I +x o0 (5.3)

A(r, )

such that

A(-, )= (5.4)
X 0

holds.

The eigenvalue problem (5.3) is linear but we will construct the nonlinear (in X)

asymptotic boundary condition S CX).p

The Jordan form J(-,X) of A(-,X) is

( , X r+ , r = 1, D+= 1 = (
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and therefore the set Q ( X e CIReC/_X 01 O is qiven by

2 C -{XIRe X 4 0) (5.6)

With appropriate boundary conditions of the form

a Iy1 (i) + a2 y2 (1) = 0 (5.7)

we conclude from Chapter 4 that every eigenvalue X e Q~ of (5.3), (5.7) is isolated and

that the dimension of the nulispace equals 1.

A complete analysis of the problem is given in Jirgens and Rellich (1976). They show

that there is an infinite sequence of eigenvalues x(n

(n) 2 -2
x = c (Z + 1 + n) V n e w 0 (5.8)

and the eigenfunctions y Cn) are given by

(n) t4- 1 Z +no1 -1)y (r) F exp(-V'X~ r )rlp p(r) -exp(-/'X~ r)r( +0r) (5.9)

because Pn Cr) is a polynomial in r of degree n. They assumed that aI= sin a,

a2 cos a with a e to,-).

A straightforward calculation gives for X e 0

FX) X E 2~ X 2X P 2X X (5.10)

and therefore, since P C) E(X)D+E_ 1 )

S PX M /i (.1

holds.

The approximatinq problems have the form

= A~r,X)x R 4 r 4 R, R >> 1 (5.12)

(al,a 2 Ix RC() = 0 (5.13)

(I-X,1]x CR) =0- IX x1 
(R) + x 

2 
(R) = 0, x (x Ixlx2)T (5.14)
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Since A(r,X) =(r and since w(R,ReIX ) 4 const. R the convergence

analysis given in Chapter 4 shows that

( n) (n) _ x /,(c ) e (
4

-R RI+n- (515)max(Ix~n - )Xn 1, |y~n -R I11, R]) ceR

n)(n) xln),

under the assumption that the X(n)'a are simple. The X) a resp. x a are the
R R

eiqenvalues reap. eigenvectors of (5.12), (5.13), (5.14) which approximate

(n) rep (n)
A reap. y

(n () d y(n) IT

(5.15) follows by using #_(r,
(n )) 

- cy(n)(r), ( r)] . Therefore the estimate

(4.891), where s appears in the exponent, can be improved using (4.57). From Markowich

(1980a) we conclude that every boundary condition SXR (R) - 0 where S is independent of

A and where

SE(X) * 0 in Q (5.16)

holds, leads to convergence of the order

max(IN(n) - (n) (n) (n)

(5.17)

( cIly (R)lw(R,Re( rX )) 4 c exp(-/ X R)R
£
n

Setting S -( SS2 1, S1S 2 e C, (5.16) is fulfilled iff

,+ a2 A* 0 (5.18)

holds. For example the natural boundary condition

xR(R) = 0 (5.19)

fulfills (5.18) (a = 1, s2 = 0) and the order of convergence, given by (5.17) differs

only by one power of 11 from the order of convergence produced by the 'optimal' boundary

condition (5.14).
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The second problem we deal with is the Orr-Sommerfeld equation (see Ng and Reid

(1980)) which governs the stability of a laminar boundary layer in a parallel flow

approximation.

1 (d2 - a232, _ {(t(z) -)_ _ 02)0_U()I=0(.0
I d

2 dz 0

with a > 0, R > 0 is the Reynolds number, (z) is the velocity distribution fulfilling

22

u(z) - 1 + F(z)e
-
', w > 0, F e C 2((0,-]) (5.21)

such that U(-) 1, U"() = 0 holds. (z)e
i X-

X
t )  

represents the disturbance stream

function. The boundary conditions for the Orr-Sommerfeld problem are,

0(0) (0) =( ) = 4'(0) = 0 (5.22)

The substitution

Y =( , . , .) (5.23)

gives the linear eigenvalue problem

0 0 1 0 0 0 0 0

0 0 0 ++ 0 0 y, 0 z <=

fz) 0 f2(z) 0 a 0 b 0 (5.24)

A(z, )

0( 0 5.5

0 1 0 0]

y e C([0,]) (5.26)

where

(a) f1 (z) -(a 4 + iaR(a 2 U(z) + tU"(z))) (5.27)

(b) f 2(z) = 
2
a
2 

+ iaRU(z) (5.27)
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(c) a - im3 R (5.27)

(d) b - -idR (5.27)

holds. The eiqenvalues of A(-,X) are

V1 (X) - a. v2 (A) - (2 + ioR( I_))'2 ,V3(X) - _sgV 4 1() _(o2 + ioR(l~X))2 (5.28)

so that Re v I(), Re v 2X) > 01 Re v3 (A), Re v4 1() < 0 for all

X e 9 - C - {XIRG X - 1, Im X 4 - R}. All eiqenvalues X e a of (5.24), (5.25), (5.26)

are isolated and the nullepaces are at most two-dimensional.

The approximating problems have the form

x I A(Z,X)x , 0 ( z ( Z (5.28)
z

1t 0 0 0
[0 1 0(0x ) - 0 (5.30)

SCX)IXzIZ) = 0
1234

1 2 3 4.
where xZ = (Xz ,X ,x z) holds and x e si.

As for the first example we calculate the 'optimal' boundary condition SA) = S (A)p

0 1 v2C X) av2  ) 1
S (A) = (5.32)

1 0 -(V 2(X) + av2(A) + a2) -av 2()( ( ) + I)

Since A(z,X) A(X) + O(z
2
e
-
Wz holds we get from (4.81) for simple eigenvalues

X=Li6 0

max(oL - Pz 1,1y - xzI[0,Z )

2-UZ2 C(5.33)
const Z e w(Zmin(a,Re v2 (p)))exp(max(-a,Re v4 (l) + c)Z)
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where y,xZ are the normed eigenfunctions. In the most interesting case

a < I Re v 4(N)l < I the order of convergence is Z 2exp(-WZ 2 
- 2(a - )Z), c > 0

sufficiently small, and linear asymptotic boundary conditions, for example

x (Z) - x 2(Z) 0 (5.34)z z

achieve a slower order of convergence, namely exp(-2(a - )Z) (see Markowich (1980a)).

For this problem the nonlinear asymptotic boundary conditions achieve a much faster

order of convergence.

Numerical experiments were performed by Ng and Reid (1980).
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